Derivative of \( y = x^{x^{2x}} \) Explained Step-by-Step
This post will walk you through how to differentiate the complex exponential function:
\( y = x^{x^{2x}} \)
Step 1: Apply Natural Logarithm
Take natural log on both sides to simplify:
\( \ln y = \ln\left(x^{x^{2x}}\right) = x^{2x} \cdot \ln x \)
Step 2: Differentiate Both Sides
Use implicit differentiation:
\( \frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx}(x^{2x} \cdot \ln x) \)
Step 3: Apply Product Rule
Let \( u = x^{2x} \), \( v = \ln x \). Then:
\( \frac{d}{dx}(uv) = u'v + uv' \)
Differentiate \( u = x^{2x} \):
Take log: \( \ln u = 2x \ln x \)
Then differentiate:
\( \frac{1}{u} \cdot \frac{du}{dx} = 2 \ln x + 2 \)
So,
\( \frac{du}{dx} = x^{2x}(2 \ln x + 2) \)
Differentiate \( v = \ln x \):
\( \frac{dv}{dx} = \frac{1}{x} \)
Step 4: Put It All Together
\[ \frac{1}{y} \cdot \frac{dy}{dx} = x^{2x}(2 \ln x + 2)\cdot \ln x + \frac{x^{2x}}{x} \]
Multiply both sides by \( y = x^{x^{2x}} \):
\[ \frac{dy}{dx} = x^{x^{2x}} \left[ x^{2x}(2 \ln x + 2)\cdot \ln x + \frac{x^{2x}}{x} \right] \]
Final Answer:
Want to Master Calculus Fast?
Check out our recommended guide to ace calculus effortlessly 👇
Tags:
- derivative of x^x^2x
- logarithmic differentiation
- calculus step by step
- advanced derivative problems
- how to differentiate complex powers

